Optimization
ns optimization
(:require [fastmath.optimization :as opt]
(:as codox])) [fastmath.dev.codox
Bayesian optimization
Reference
fastmath.optimization
Optimization.
Namespace provides various optimization methods.
- Brent (1d functions)
- Bobyqa (2d+ functions)
- Powell
- Nelder-Mead
- Multidirectional simplex
- CMAES
- Gradient
- L-BFGS-B
- Bayesian Optimization (see below)
- Linear optimization
All optimizers require bounds.
## Optimizers
To optimize functions call one of the following functions:
- minimize or maximize - to perform actual optimization
- scan-and-minimize or scan-and-maximize - functions find initial point using brute force and then perform optimization paralelly for best initialization points. Brute force scan is done using jitter low discrepancy sequence generator.
You can also create optimizer (function which performs optimization) by calling minimizer or maximizer. Optimizer accepts initial point.
All above accept:
- one of the optimization method, ie:
:brent
,:bobyqa
,:nelder-mead
,:multidirectional-simplex
,:cmaes
,:gradient
,:bfgs
and:lbfgsb
- function to optimize
- parameters as a map
For parameters meaning refer Optim package
### Common parameters
:bounds
(obligatory) - search ranges for each dimensions as a seqence of [low high] pairs:initial
- initial point other then mid of the bounds as vector:max-evals
- maximum number of function evaluations:max-iters
- maximum number of algorithm interations:bounded?
- should optimizer force to keep search within bounds (some algorithms go outside desired ranges):stats?
- return number of iterations and evaluations along with result:rel
and:abs
- relative and absolute accepted errors
For scan-and-...
functions additionally you can provide:
:N
- number of brute force iterations:n
- fraction of N which are used as initial points to parallel optimization:jitter
- jitter factor for sequence generator (for scanning domain)
### Specific parameters
- BOBYQA -
:number-of-points
,:initial-radius
,:stopping-radius
- Nelder-Mead -
:rho
,:khi
,:gamma
,:sigma
,:side-length
- Multidirectional simples -
:khi
,:gamma
,:side-length
- CMAES -
:check-feasable-count
,:diagonal-only
,:stop-fitness
,:active-cma?
,:population-size
- Gradient -
:bracketing-range
,:formula
(:polak-ribiere
or:fletcher-reeves
),:gradient-h
(finite differentiation step, default:0.01
)
## Bayesian Optimization
Bayesian optimizer can be used for optimizing expensive to evaluate black box functions. Refer this article or this article
## Linear optimization
bayesian-optimization
(bayesian-optimization f {:keys [warm-up init-points bounds utility-function-type utility-param kernel kscale jitter noise optimizer optimizer-params normalize?], :or {utility-function-type :ucb, init-points 3, jitter 0.25, noise 1.0E-8, utility-param (if (#{:ei :poi} utility-function-type) 0.001 2.576), warm-up (* (count bounds) 1000), normalize? true, kernel :matern-52, kscale 1.0}})
Bayesian optimizer
Parameters are:
:warm-up
- number of brute force iterations to find maximum of utility function:init-points
- number of initial evaluation before bayesian optimization starts. Points are selected using jittered low discrepancy sequence generator (see: jittered-sequence-generator:bounds
- bounds for each dimension:utility-function-type
- one of:ei
,:poi
or:ucb
:utility-param
- parameter for utility function (kappa forucb
and xi forei
andpoi
):kernel
- kernel, default:matern-52
, see fastmath.kernel:kscale
- scaling factor for kernel:jitter
- jitter factor for sequence generator (used to find initial points):noise
- noise (lambda) factor for gaussian process:optimizer
- name of optimizer (used to optimized utility function):optimizer-params
- optional parameters for optimizer:normalize?
- normalize data in gaussian process?
Returns lazy sequence with consecutive executions. Each step consist:
:x
- maximumx
:y
- value:xs
- list of all visited x’s:ys
- list of values for every visited x:gp
- current gaussian process regression instance:util-fn
- current utility function:util-best
- best x in utility function
linear-optimization
(linear-optimization target constraints)
(linear-optimization target constraints {:keys [goal epsilon max-ulps cut-off rule non-negative? max-iter stats?], :or {goal :minimize, epsilon 1.0E-6, max-ulps 10, cut-off 1.0E-10, rule :dantzig, non-negative? false, max-iter Integer/MAX_VALUE}})
Solves a linear problem.
Target is defined as a vector of coefficients and constant as the last value: [a1 a2 a3 ... c]
means f(x1,x2,x3) = a1*x1 + a2*x2 + a3*x3 + ... + c
Constraints are defined as a sequence of one of the following triplets:
[a1 a2 a3 ...] R n
- which meansa1*x1+a2*x2+a3*x3+... R n
[a1 a2 a3 ... ca] R [b1 b2 b3 ... cb]
- which meansa1*x1+a2*x2+a3*x3+...+ca R b1*x1+b2*x2+b3*x3+...+cb
R
is a relationship and can be one of <=
, >=
or =
as symbol or keyword. Also :leq
, :geq
and :eq
are valid.
Function returns pair of optimal point and function value. If stat?
option is set to true, returns also information about number of iterations.
Possible options:
:goal
-:minimize
(default) or:maximize
:rule
- pivot selection rule,:dantzig
(default) or:bland
:max-iter
- maximum number of iterations, maximum integer by default:non-negative?
- allow non-negative variables only, default:false
:epsilon
- convergence value, default:1.0e-6
::max-ulps
- floating point comparisons, default:10
ulp:cut-off
- pivot elements smaller than cut-off are treated as zero, default:1.0e-10
1 4 0] [[-3 1] :<= 6
(linear-optimization [-1 -2] :>= -4
[-0 1] :>= -3])
[;; => [(9.999999999999995 -3.0) -21.999999999999993]
maximize
(maximize method f config)
Maximize given function.
Parameters: optimization method, function and configuration.
maximizer
(maximizer method f config)
Create optimizer which maximizes function.
Returns function which performs optimization for optionally given initial point.
minimize
(minimize method f config)
Minimize given function.
Parameters: optimization method, function and configuration.
minimizer
(minimizer method f config)
Create optimizer which minimizes function.
Returns function which performs optimization for optionally given initial point.
scan-and-maximize
scan-and-minimize
source: clay/optimization.clj