Polynomials
ns polynomials
(
:require [fastmath.polynomials :as poly]
(:as codox])) [fastmath.dev.codox
Reference
fastmath.polynomials
->Polynomial
(->Polynomial cfs d)
Positional factory function for class fastmath.polynomials.Polynomial.
->PolynomialR
(->PolynomialR cfs d)
Positional factory function for class fastmath.polynomials.PolynomialR.
add
(add poly)
(add poly1 poly2)
Add two polynomials.
bessel-t
(bessel-t degree)
bessel-y
(bessel-y degree)
chebyshev-T
(chebyshev-T degree)
chebyshev-U
(chebyshev-U degree)
chebyshev-V
(chebyshev-V degree)
chebyshev-W
(chebyshev-W degree)
coeffs
(coeffs poly)
Coefficients of polynomial
coeffs->polynomial
(coeffs->polynomial & coeffs)
Create polynomial object for unrolled coefficients.
coeffs->ratio-polynomial
(coeffs->ratio-polynomial & coeffs)
Create ratio based polynomial object for unrolled coefficients.
complex-evalpoly
(complex-evalpoly x & coeffs)
Evaluate complex polynomial
complex-makepoly
(complex-makepoly coeffs)
Create complex polynomial function for given coefficients
complex-mevalpoly MACRO
(complex-mevalpoly x & coeffs)
Evaluate complex polynomial macro version in the form coeffs[0]+coeffs[1]x+coeffs[2]x^2+….
complex-muladd
(complex-muladd x y z)
(x y z)
-> (+ z (* x y))
degree
(degree poly)
derivative
(derivative poly)
(derivative poly order)
Derivative of the polynomial.
eval-bessel-t
(eval-bessel-t degree x)
eval-bessel-y
(eval-bessel-y degree x)
eval-chebyshev-T
(eval-chebyshev-T degree x)
Chebyshev polynomial of the first kind
eval-chebyshev-U
(eval-chebyshev-U degree x)
Chebyshev polynomials of the second kind
eval-chebyshev-V
(eval-chebyshev-V degree x)
Chebyshev polynomials of the third kind
eval-chebyshev-W
(eval-chebyshev-W degree x)
Chebyshev polynomials of the fourth kind
eval-gegenbauer-C
(eval-gegenbauer-C degree x)
(eval-gegenbauer-C degree order x)
Gegenbauer (ultraspherical) polynomials
eval-hermite-H
(eval-hermite-H degree x)
Hermite polynomials
eval-hermite-He
(eval-hermite-He degree x)
Hermite polynomials
eval-jacobi-P
(eval-jacobi-P degree alpha beta x)
Jacobi polynomials
eval-laguerre-L
(eval-laguerre-L degree x)
(eval-laguerre-L degree order x)
Evaluate generalized Laguerre polynomial
eval-legendre-P
(eval-legendre-P degree x)
eval-meixner-pollaczek-P
(eval-meixner-pollaczek-P degree lambda phi x)
evalpoly
(evalpoly x & coeffs)
Evaluate polynomial for given coefficients
evaluate
(evaluate poly x)
Evaluate polynomial
gegenbauer-C
(gegenbauer-C degree)
(gegenbauer-C degree order)
hermite-H
(hermite-H degree)
hermite-He
(hermite-He degree)
ince-C
(ince-C p m e)
(ince-C p m e normalization)
Ince C polynomial of order p and degree m.
normalization
parameter can be :none
(default), :trigonometric
or millers
.
ince-C-coeffs
(ince-C-coeffs p m e normalization)
ince-C-radial
(ince-C-radial p m e)
(ince-C-radial p m e normalization)
Ince C polynomial of order p and degree m.
normalization
parameter can be :none
(default), :trigonometric
or millers
.
ince-S
(ince-S p m e)
(ince-S p m e normalization)
Ince S polynomial of order p and degree m.
normalization
parameter can be :none
(default), :trigonometric
or millers
.
ince-S-coeffs
(ince-S-coeffs p m e normalization)
ince-S-radial
(ince-S-radial p m e)
(ince-S-radial p m e normalization)
Ince S polynomial of order p and degree m.
normalization
parameter can be :none
(default), :trigonometric
or millers
.
jacobi-P
(jacobi-P degree alpha beta)
laguerre-L
(laguerre-L degree)
(laguerre-L degree order)
Generalized Laguerre polynomials
legendre-P
(legendre-P degree)
makepoly
(makepoly coeffs)
Create polynomial function for given coefficients
meixner-pollaczek-P
(meixner-pollaczek-P degree lambda phi)
mevalpoly MACRO
(mevalpoly x & coeffs)
Evaluate polynomial macro version in the form coeffs[0]+coeffs[1]x+coeffs[2]x^2+….
mult
(mult poly)
(mult poly1 poly2)
Multiply two polynomials.
polynomial
(polynomial coeffs)
Create polynomial object.
ratio-polynomial
(ratio-polynomial coeffs)
Create polynomial operating on ratios.
scale
(scale poly v)
Multiply polynomial by scalar
sub
(sub poly)
(sub poly1 poly2)
Subtract two polynomials
source: clay/polynomials.clj