Polynomials

(ns polynomials

  (:require [fastmath.polynomials :as poly]
            [fastmath.dev.codox :as codox]))

Reference

fastmath.polynomials

->Polynomial

  • (->Polynomial cfs d)

Positional factory function for class fastmath.polynomials.Polynomial.

->PolynomialR

  • (->PolynomialR cfs d)

Positional factory function for class fastmath.polynomials.PolynomialR.

add

  • (add poly)
  • (add poly1 poly2)

Add two polynomials.

bessel-t

  • (bessel-t degree)

bessel-y

  • (bessel-y degree)

chebyshev-T

  • (chebyshev-T degree)

chebyshev-U

  • (chebyshev-U degree)

chebyshev-V

  • (chebyshev-V degree)

chebyshev-W

  • (chebyshev-W degree)

coeffs

  • (coeffs poly)

Coefficients of polynomial

coeffs->polynomial

  • (coeffs->polynomial & coeffs)

Create polynomial object for unrolled coefficients.

coeffs->ratio-polynomial

  • (coeffs->ratio-polynomial & coeffs)

Create ratio based polynomial object for unrolled coefficients.

complex-evalpoly

  • (complex-evalpoly x & coeffs)

Evaluate complex polynomial

complex-makepoly

  • (complex-makepoly coeffs)

Create complex polynomial function for given coefficients

complex-mevalpoly MACRO

  • (complex-mevalpoly x & coeffs)

Evaluate complex polynomial macro version in the form coeffs[0]+coeffs[1]x+coeffs[2]x^2+….

complex-muladd

  • (complex-muladd x y z)

(x y z) -> (+ z (* x y))

degree

  • (degree poly)

derivative

  • (derivative poly)
  • (derivative poly order)

Derivative of the polynomial.

eval-bessel-t

  • (eval-bessel-t degree x)

eval-bessel-y

  • (eval-bessel-y degree x)

eval-chebyshev-T

  • (eval-chebyshev-T degree x)

Chebyshev polynomial of the first kind

eval-chebyshev-U

  • (eval-chebyshev-U degree x)

Chebyshev polynomials of the second kind

eval-chebyshev-V

  • (eval-chebyshev-V degree x)

Chebyshev polynomials of the third kind

eval-chebyshev-W

  • (eval-chebyshev-W degree x)

Chebyshev polynomials of the fourth kind

eval-gegenbauer-C

  • (eval-gegenbauer-C degree x)
  • (eval-gegenbauer-C degree order x)

Gegenbauer (ultraspherical) polynomials

eval-hermite-H

  • (eval-hermite-H degree x)

Hermite polynomials

eval-hermite-He

  • (eval-hermite-He degree x)

Hermite polynomials

eval-jacobi-P

  • (eval-jacobi-P degree alpha beta x)

Jacobi polynomials

eval-laguerre-L

  • (eval-laguerre-L degree x)
  • (eval-laguerre-L degree order x)

Evaluate generalized Laguerre polynomial

eval-legendre-P

  • (eval-legendre-P degree x)

eval-meixner-pollaczek-P

  • (eval-meixner-pollaczek-P degree lambda phi x)

evalpoly

  • (evalpoly x & coeffs)

Evaluate polynomial for given coefficients

evaluate

  • (evaluate poly x)

Evaluate polynomial

gegenbauer-C

  • (gegenbauer-C degree)
  • (gegenbauer-C degree order)

hermite-H

  • (hermite-H degree)

hermite-He

  • (hermite-He degree)

ince-C

  • (ince-C p m e)
  • (ince-C p m e normalization)

Ince C polynomial of order p and degree m.

normalization parameter can be :none (default), :trigonometric or millers.

ince-C-coeffs

  • (ince-C-coeffs p m e normalization)

ince-C-radial

  • (ince-C-radial p m e)
  • (ince-C-radial p m e normalization)

Ince C polynomial of order p and degree m.

normalization parameter can be :none (default), :trigonometric or millers.

ince-S

  • (ince-S p m e)
  • (ince-S p m e normalization)

Ince S polynomial of order p and degree m.

normalization parameter can be :none (default), :trigonometric or millers.

ince-S-coeffs

  • (ince-S-coeffs p m e normalization)

ince-S-radial

  • (ince-S-radial p m e)
  • (ince-S-radial p m e normalization)

Ince S polynomial of order p and degree m.

normalization parameter can be :none (default), :trigonometric or millers.

jacobi-P

  • (jacobi-P degree alpha beta)

laguerre-L

  • (laguerre-L degree)
  • (laguerre-L degree order)

Generalized Laguerre polynomials

legendre-P

  • (legendre-P degree)

makepoly

  • (makepoly coeffs)

Create polynomial function for given coefficients

meixner-pollaczek-P

  • (meixner-pollaczek-P degree lambda phi)

mevalpoly MACRO

  • (mevalpoly x & coeffs)

Evaluate polynomial macro version in the form coeffs[0]+coeffs[1]x+coeffs[2]x^2+….

mult

  • (mult poly)
  • (mult poly1 poly2)

Multiply two polynomials.

polynomial

  • (polynomial coeffs)

Create polynomial object.

ratio-polynomial

  • (ratio-polynomial coeffs)

Create polynomial operating on ratios.

scale

  • (scale poly v)

Multiply polynomial by scalar

sub

  • (sub poly)
  • (sub poly1 poly2)

Subtract two polynomials