fastmath.transform
Transforms.
See transformer and TransformProto for details.
Wavelet
Based on JWave library.
Be aware that some of the wavelet types doesn’t work properly. :battle-23
, :cdf-53
, :cdf-97
.
Cos/Sin/Hadamard
Orthogonal or standard fast sine/cosine/hadamard 1d transforms.
Fourier
DFT.
Categories
Other vars: compress denoise forward-1d forward-2d reverse-1d reverse-2d transformer wavelets-list
compress
(compress trans xs mag)
(compress xs mag)
Compress transformed signal xs
with given magnitude mag
.
Examples
Compress 1d - explicite usage
(let [t (transformer :fast :symlet-5)]
(seq (reverse-1d t (compress (forward-1d t [1 2 3 4]) 0.3))))
;;=> (1.4193190842687744
;;=> 1.5520720330586624
;;=> 3.0147763185070553
;;=> 4.013832564167568)
Compress 1d - implicit usage
(let [t (transformer :fast :symlet-5)] (seq (compress t [1 2 3 4] 0.3)))
;;=> (1.4193190842687744
;;=> 1.5520720330586624
;;=> 3.0147763185070553
;;=> 4.013832564167568)
Compress 2d - explicit usage
(let [t (transformer :fast :symlet-5)]
(m/double-double-array->seq
(reverse-2d t (compress (forward-2d t [[1 2] [3 4]]) 0.5))))
;;=> ((1.4999999999976417 1.5000000000047216)
;;=> (3.499999999992923 3.5000000000094422))
Compress 2d - implicit usage
(let [t (transformer :fast :symlet-5)]
(m/double-double-array->seq (compress t [[1 2] [3 4]] 0.5)))
;;=> ((1.4999999999976417 1.5000000000047216)
;;=> (3.499999999992923 3.5000000000094422))
denoise
(denoise xs soft?)
(denoise trans xs soft?)
(denoise xs)
Adaptive denoising of time series (1d).
Use on transformed sequences or call with transformer object.
SMILE implementation of WaveletShrinkage denoise function.
Examples
Denoise signal - implicit usage
(let [t (transformer :packet :haar)]
(v/approx (seq (denoise t [1 2 3 4 5 6.5 7.5 8] true))))
;;=> (1.76 2.0 3.0 3.24 6.01 6.25 7.25 7.49)
Denoise signal - explicit usage
(let [t (transformer :packet :haar)]
(v/approx
(vec (reverse-1d t
(denoise (forward-1d t [1 2 3 4 5 6.5 7.5 8])
true)))))
;;=> [1.76 2.0 3.0 3.24 6.01 6.25 7.25 7.49]
forward-1d
(forward-1d t xs)
Forward transform of sequence or array.
Examples
Usage
(seq (forward-1d (transformer :packet :haar-orthogonal) [-1 8 7 6]))
;;=> (20.0 -6.0 -8.0 -10.0)
(seq (forward-1d (transformer :fast :haar-orthogonal) [-1 8 7 6]))
;;=> (20.0 -6.0 -9.0 1.0)
(seq (forward-1d (transformer :decomposed-fast :haar-orthogonal)
[10 -1 8 7 6]))
;;=> (24.0 -6.0 11.0 1.0 6.0)
(seq (forward-1d (transformer :orthogonal :sine) [0 -1 8 7]))
;;=> (0.0 8.65685424949238 -5.65685424949238 -2.6568542494923815)
(seq (forward-1d (transformer :standard :hadamard) [-1 8 7 6]))
;;=> (20.0 -8.0 -6.0 -10.0)
(seq (forward-1d (transformer :standard :dft) [-1 8 7 6]))
;;=> (3.0 7.0 -3.9999999999999996 0.9999999999999996)
forward-2d
(forward-2d t xss)
Forward transform of sequence or array.
Examples
Usage
(m/double-double-array->seq
(forward-2d (transformer :packet :daubechies-6) [[-1 8] [7 6]]))
;;=> ((9.999999999999998 -3.9999999999999987)
;;=> (-3.000000000000001 -4.999999999999999))
(m/double-double-array->seq
(forward-2d (transformer :fast :daubechies-6) [[-1 8] [7 6]]))
;;=> ((9.999999999999998 -3.9999999999999987)
;;=> (-3.000000000000001 -4.999999999999999))
reverse-1d
(reverse-1d t xs)
Forward transform of sequence or array.
Examples
Usage
(let [t (transformer :packet :haar-orthogonal)]
(seq (reverse-1d t (forward-1d t [-1 8 7 6]))))
;;=> (-1.0 8.0 7.0 6.0)
(let [t (transformer :fast :haar-orthogonal)]
(seq (reverse-1d t (forward-1d t [-1 8 7 6]))))
;;=> (-1.0 8.0 7.0 6.0)
(let [t (transformer :decomposed-fast :haar-orthogonal)]
(seq (reverse-1d t (forward-1d t [10 -1 8 7 6]))))
;;=> (10.0 -1.0 8.0 7.0 6.0)
(let [t (transformer :orthogonal :sine)]
(seq (reverse-1d t (forward-1d t [0 8 7 6]))))
;;=> (0.0 8.0 7.000000000000002 6.0)
(let [t (transformer :standard :hadamard)]
(seq (reverse-1d t (forward-1d t [-1 8 7 6]))))
;;=> (-1.0 8.0 7.0 6.0)
(let [t (transformer :standard :dft)]
(seq (reverse-1d t (forward-1d t [-1 8 7 6]))))
;;=> (-0.9999999999999996 8.0 7.0 6.0)
reverse-2d
(reverse-2d t xss)
Forward transform of sequence or array.
Examples
Usage
(let [t (transformer :packet :daubechies-20)]
(m/double-double-array->seq
(reverse-2d t (forward-2d t [[-1 8] [7 6]]))))
;;=> ((-0.9999999999999988 7.9999999999999964)
;;=> (6.999999999999999 5.999999999999997))
(let [t (transformer :fast :daubechies-20)]
(m/double-double-array->seq
(reverse-2d t (forward-2d t [[-1 8] [7 6]]))))
;;=> ((-0.9999999999999988 7.9999999999999964)
;;=> (6.999999999999999 5.999999999999997))
transformer
multimethod
Create transform object for given wavelet.
Wavelets
:fast
for 1d or 2d Fast Wavelet Transform. Size of data should be power of2
.:packet
for 1d or 2d Wavelet Packet Transform. Size of data should be power of2
.:decomposed-fast
for 1d Fast Wavelet Transform. Data can have any size (Ancient Egyptian Decomposition is used).:decomposed-packet
for 1d Wavelet Packet Transform. Data can have any size (Ancient Egyptian Decomposition is used).
Second argument is wavelet name as key. See wavelets-list for all supported names.
Sine/Cosine/Hadamard
:standard
for 1d:sine
,:cosine
,:hadamard
.:orthogonal
for 1d:sine
,:cosine
.
Note that :sine
and :cosine
require first element to be equal 0
. Size of data should be power of 2.
Fourier
:standard
:dft
- 1d Discrete Fourier Transform - returns double-array where even elements are real part, odd elements are imaginary part.
Examples
Usage
(transformer :packet :discrete-mayer)
;;=> jwave.transforms.WaveletPacketTransform@444a4ad2
wavelets-list
List of all possible wavelets.
Examples
List of wavelets
(sort wavelets-list)
;;=> (:battle-23
;;=> :biorthogonal-11 :biorthogonal-13
;;=> :biorthogonal-15 :biorthogonal-22
;;=> :biorthogonal-24 :biorthogonal-26
;;=> :biorthogonal-28 :biorthogonal-31
;;=> :biorthogonal-33 :biorthogonal-35
;;=> :biorthogonal-37 :biorthogonal-39
;;=> :biorthogonal-44 :biorthogonal-55
;;=> :biorthogonal-68 :cdf-53
;;=> :cdf-97 :coiflet-1
;;=> :coiflet-2 :coiflet-3
;;=> :coiflet-4 :coiflet-5
;;=> :daubechies-10 :daubechies-11
;;=> :daubechies-12 :daubechies-13
;;=> :daubechies-14 :daubechies-15
;;=> :daubechies-16 :daubechies-17
;;=> :daubechies-18 :daubechies-19
;;=> :daubechies-2 :daubechies-20
;;=> :daubechies-3 :daubechies-4
;;=> :daubechies-5 :daubechies-6
;;=> :daubechies-7 :daubechies-8
;;=> :daubechies-9 :discrete-mayer
;;=> :haar :haar-orthogonal
;;=> :legendre-1 :legendre-2
;;=> :legendre-3 :symlet-10
;;=> :symlet-11 :symlet-12
;;=> :symlet-13 :symlet-14
;;=> :symlet-15 :symlet-16
;;=> :symlet-17 :symlet-18
;;=> :symlet-19 :symlet-2
;;=> :symlet-20 :symlet-3
;;=> :symlet-4 :symlet-5
;;=> :symlet-6 :symlet-7
;;=> :symlet-8 :symlet-9)